Wêne:Spherical Lens.gif

Naverokên rûpelê bi zimanên din nayê destekkirin.
Ji Wîkîpediya, ensîklopediya azad.

Spherical_Lens.gif(543 × 543 pixel, mezinbûnê data: 6,8 MB, MIME-typ: image/gif, looped, 92 frames, 9,2 s)


Danasîn

Danasîn
English: Visualization of light through a spherical lens, as a function of the radii of curvature of the two facets. Notice that we are far from the "thin lens" approximation.
Dîrok
Çavkanî https://twitter.com/j_bertolotti/status/1392058658520027138
Xwedî Jacopo Bertolotti
Destûr
(Dîsa bikaranînê vê dosyeye)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.0 code

\[Lambda]0 = 1.; k0 = N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so all lengths are now in units of wavelengths*)
\[Delta] = \[Lambda]0/15; \[CapitalDelta] = 40*\[Lambda]0; (*Parameters for the grid*)
\[Sigma] = 10 \[Lambda]0; (*width of the gaussian beam*)

sourcef[x_, y_] := E^(-(x^2/(2 \[Sigma]^2))) E^(-((y + \[CapitalDelta]/2)^2/(2 (\[Lambda]0/2)^2))) E^(I k0 y);
\[Phi]in = Table[Chop[sourcef[x, y]], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/ 2, \[Delta]}]; (*Discretized source*)
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)

imn = Table[ Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Imaginary part of the refractive index (used to emulate absorbing boundaries)*)
dim = Dimensions[\[Phi]in][[1]];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)

ycenter = Map[y0 /. # &, FullSimplify[Solve[(x1)^2 + (y1 - y0)^2 == r^2, {y0}]][[All, 1, All]]  ];

surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]}];
frames1 = Table[
  ren = Table[ If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], n0, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[ SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  
  ImageAdd[
   ArrayPlot[ Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}],
   ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ](*Plot everything*)
  , {n0, 1, 2.5, 0.24}];

surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(
        2 (c + \[CapitalDelta]/4))} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]}];
frames2 = Table[
  ren = Table[ If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
    M = L + DiagonalMatrix[ SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  
  ImageAdd[
   ArrayPlot[
    Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, 
    Frame -> False, PlotRange -> {0, 1}],ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ](*Plot everything*)
  , {c, -(\[CapitalDelta]/4) + 0.01, 0, \[CapitalDelta]/(20*3)}];

surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 5/8 \[CapitalDelta]} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(2 (c + \[CapitalDelta]/4))}];
frames3 = Table[
  ren = Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  
  ImageAdd[
   ArrayPlot[Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}],
   ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ](*Plot everything*)
  , {c, -(\[CapitalDelta]/4) + 0.01, -\[CapitalDelta]/10, \[CapitalDelta]/(20*3)}];

surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(2 (c + \[CapitalDelta]/4))} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 109/120 \[CapitalDelta]}];
frames4 = Table[
  ren = Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  
  ImageAdd[
   ArrayPlot[Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}], ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ](*Plot everything*)
  , {c, 0, -(\[CapitalDelta]/4) + 0.01, -(\[CapitalDelta]/(20*3))}];

surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(2 (c + \[CapitalDelta]/4))}];
frames5 = Table[
  ren = Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  
  ImageAdd[
   ArrayPlot[Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}], ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ](*Plot everything*)
  , {c, -\[CapitalDelta]/10, -(\[CapitalDelta]/4) + 0.01, -(\[CapitalDelta]/(20*3))}];

ListAnimate[ Flatten[ Join[Table[frames1[[1]], {5}], frames1, Table[frames2[[1]], {5}], frames2, Table[frames3[[1]], {5}], frames3, Table[frames4[[1]], {5}], frames4, Table[frames5[[1]], {5}], frames5, Table[frames1[[-1]], {5}], Reverse@frames1]] ]

Lîsans

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents
Visualization of light through a spherical lens

Items portrayed in this file

motîv Kurdish (Latin script) (transliterated)

spherical lens îngilîzî

Gaussian beam îngilîzî

some value

kurteya navê nivîskarî Kurdish (Latin script) (transliterated): Jacopo Bertolotti
URL Kurdish (Latin script) (transliterated): https://commons.wikimedia.org/wiki/user:Berto

destûr Kurdish (Latin script) (transliterated)

dema avabûnê Kurdish (Latin script) (transliterated)

11 gulan 2021

Dîroka daneyê

Ji bo dîtina guhartoya wê demê bişkoka dîrokê bitikîne.

Dîrok/KatjimêrWêneyê biçûkMezinahîBikarhênerŞirove
niha09:19, 12 gulan 2021Versiyona biçûkkirî yê 09:19, 12 gulan 2021543 x 543 (6,8 MB)BertoUploaded own work with UploadWizard

Rûpelekî ku ji vê dosyeyê bi kar tîne nîne.

Bikaranîna gerdûnî ya pelê

Ev wîkiyên di rêzê de vê pelê bi kar tînin:

  • Bikaranîna di en.wikipedia.org de

Daneyên meta