Here naverokê

Fotofosforîlasyon

Ji Wîkîpediya, ensîklopediya azad.

Fotofosforîlasyon (bi înglîzî:photophosphorylation),di karlêkên fotosentezê de, bi navbeynkariya enerjiya ronahiyê, bi ADP-yê ve girêdana fosfatê û çêkirina ATP-yê wekî fotofosforîlasyon tê navkirin.

Bi molekulek endamî ve girêdana koma fosfatê wekî kiryara fosforîlasyonê tê navkirin.[1] Xane bi sê corên fosforîkirinê ji ADP-yê ATP çêdikin.

Xane bi sê coran, bi fosforîlasyonê ATP çêdike.

1.Fosforîlasyona di asta substradê: Di pêvajoya xanehenaseyê de, di qonaxên glîkolîz û çerxa Krebs de bi navbeynkariya enzîman, komek fosfat li ADP-yê tê girêdan û ATP tê çêkirin. Bi vê cor fosforîlasyonê, di karlêkên bahenaseya xaneyê (bi înglîzî: aerobic cellular respiration), nebahenaseya xaneyê (bi înglîzî: anerobic cellular respiration) û genînê de (bi înglîzî: fermentation) ATP tê bidestxistin.

2. Fosforîlasyona oksîdatîv:Di pêvajoya henaseya xaneyê de, enerjiya ji oksandin û kêmkirina molekulên zincîra guhaztina elektronan ve hatiye berdan, ji bo çêkirina ATP-yê tê bikaranîn. Bahenaseya xaneyê û nebahenaseya xaneyê de bi vê rêçeyê ATP tê çêkirin.

3. Fotofosforîlasyon:Di qonaxa karlêkên ronahiyê ya fotosentezê de, enerjiya ronahiyê ji bo girêdana koma fosfatê û ADP-yê tê bikaranîn. Zîndewerên wekî riwek, kewzên avê, êglena û hin bakterî ko bi rêçeya fotosentezê ji madeyên neendamî, xurekên endamî çêdikin, bi fotofosforîlasyonê ATP çêdikin.

 Gotara bingehîn: Kemîozmoz
Di zîncîra guhaztina elektronan de rêçeya herikê ya elektrona hanbûyî dibe ko bi awayekî çerxî an jî neçerxî (xêzî) be. Bi herdu rêçeyan jî ATP tê berhemkirin, loma fotofosforîlasyon bi du awayê rû dide; fotofosforîlasyona çerxî û fotofosforîlasyona neçerxî (xêzî).

Kemîozmoz (bi înglîzî: chemiosmosis) rêçeyek bo çêkirina ATP-yê ye, zincîra guhaztina elektronan û pompeya protonan tên bikaranîn ko îyonên hîdrojenê ji parzûnê derbas bibin, û bi enerjiya serbestmayî jî komek fosfatê bi ADP-yê ve were girêdan û ATP were çêkirin.[2] Di karlêkên henaseya xaneyê û fotosentezê de bi kemîozmozê, bi navbeynkariya ATP sentazê , ATP tê berhemanîn.

Di karlêkên jêrdestê ronahiyê de encama herî girîng a herika elektronan a ji avê ber bi NADP+-yê, avakirina gradyana protonan e.[3]Li ser zincîra guhaztina elektronan de hinek ji enerjiya elektronan, ji bo pompekirina protonan tê xerckirin. Proton ji stromayê, di parzûna tîlakoîdê de ber bi lumena tîlakoîdê tên pompekirin. Parzûna tîlakoîdê ji bo protonan nedelînbar e (bi înglîzî: impermeable). Ji ber pompekirina protonan, li aliyekî parzûnê de xestiya îyonên hîdrojenê li gor aliyê din zêdetir dibe. Proton meyl dikin ko ber bi stromayê ve biherikin, ev meyla herikê wekî gradyana xestiyê (bi înglîzî: concentration gradient) tê navkirin. Di nav tîlakoîde berhevbûna protonan, bargeya tîlakoîdê li gor stromayê, ber bi pozîtîvê diguherîne, loma li seranserê parzûna tîlakoîdê de potansiyela elektrîkê ava dibe. Ev rewş wekî gradyana karebayî (bi înglîzî:electrical gradient) tê navkirin. Gradyana karebayî jî protonan han dike ko ber bi stromayê ve biherikin.Ji ber gradyana karabeyî û gradyana xestiyê, meyla herika protonan, wekî hêza handerê protonan (bi înglîzî:proton motive force) tê navkirin. Hêza handerê protonan di ATP sentazên kloroplastan de ji bo çêkirina ATP tê bikaranîn.[4]Sîtokrom b6f û ATP sentaz bi hev re kar dikin bo berhemkirina ATP-yê.

Di zîncîra guhaztina elektronan de rêçeya herikê ya elektrona hanbûyî dibe ko bi awayekî çerxî an jî neçerxî (xêzî) be. Bi herdu rêçeyan jî ATP tê berhemkirin, loma fotofosforîlasyon bi du awayê rû dide; fotofosforîlasyona çerxî û fotofosforîlasyona neçerxî (xêzî).[5]

Hejmara ATP û NADPH-yên bi herika elektronan a neçerxî tên berhemanîn heman in, lê di karlêkên nejêrdestê ronahiyê de pêdiviya karlêkan bo ATP-yê ji NADPH-yê zêdetir e. Ji bo çêkirina molekulek glukozê 18 ATP û 12 NADPH tên bikaranîn. Ango ji bo çêkirina glukozê divê di hawirdorê de hejmara ATP-yê ji ya NADPH-yê zêdetir be, bi herika elektronan a çerxî hejmara ATP tê zêdekirin. Di nav zîndewerên fotosentezî de rêçeya herika neçerxî hê zêdetir e.[6]

Fotofosforîlasyona Çerxî

[biguhêre | çavkaniyê biguhêre]

Di fotofosforîlasyona çerxî (bi înglîzî:cyclic photophosphorylation) de elektron ji fotosîstema I bi awayekî çerxî tên guhaztin û disa vedigerin fotosîstema I-ê. Ev çerxa eletronan gradyana protonan ava dike, proton jî ji bo çêkirina ATP-yê di ATP sentazê de tên bikaranîn.

Gava foton li pîgmentên antena fotosîstema I-ê dixin, enerjiya fotonan ber bi navenda karlêkê ve tê arastekirin û ji klorofîla a ya navenda karlêkê elektron han dibin. Elektronên hanbûyî yên bi enerjiya bilind, tên şandin bo wergira elektronê ya yekemîn. Elektron ji wergira yekemîn tên şandin bo ferredoksînê, ji ferredoksînê tên şandin bo plastokînonê, ji plastokînolê (plastokînona hatiyê kêmkirin) elektron derbasî kompleksa sîtokrom b6f dibe, ji wir ber bi plastosîyanînê tên guhaztin, li dawiya dawî elektron vedigerin fotosîstema I-ê.[7]

Her ko elektron di rêçeya çerxî de digerin, ji elektronan hinek enerjî tê berdan. Ev enerjî ji bo guhaztina protonan tê xerckirin. Proton ji stromayê ber bi lumena tîlakoîdê ve tên pompekirin. Di nav tîlakoîdê de gradyana protonan (meyla herikê ya protonan) zêde dibe. Protonên nav tîlakoîdê di nav ATP sentazê de ber bi stromayê diherikin, di heman demê de ADP tê fosforîkirin û ATP tê berhemkirin.[8]

Gava di hawirdorê de asta NADP+ kêm, ya NADPH-yê zêde ye, elektron bi awayekî çerxî diherikin. Ji ber ko ji bo karlêkên çerxa Calvin bi têra xwe NADPH heye, di zîncîra guhaztina elektronan de bêyî ko NADPH were berhemkirin ATP tê çêkirin.[8]

Fotofosforîlasyona neçerxî (Fotofosforîlasyona xêzî)

[biguhêre | çavkaniyê biguhêre]

Di fotofosforîlasyona neçerxî de enerjiya elektronên ji fotosîstema II tên, ji aliyê sîtokrom b6f ve ji bo pompekirina protonan ji lumena tîlakoîdê ber bi stromayê ve tê xerckirin. Ev enerjî ji aliyê ATP sentaz ve ji bo çêkiririna ATP-yê tê bikaranîn.

Di fotofosforîlasyona xêzî de, elektronên ji fotosîstema II ve hatine berdan di zincîra guhaztina elektronan de diherikin. Li dawiya zincîrê, elektron dikevin nav fotosîstema I-ê. Enerjiya fotonan, ji fotosîtema I-ê elektron dide berdan. Ev elektron ji bo kêmkirina NADP+ bo NADPH-yê tên bikaranîn. Fotosîstema II, ji dewsa elektronên ji bo fotosîstema I ve hatine şandin, ji avê elektron digire û hejmara elektronên xwe temam dike. Molekulên avê jî piştî windakirina elektronan hildiweşin bo 2H+ û atoma oksîjenê.[9]

Gavên herika ektronan di fotofosforîlasyona xêzî (neçerxî) de

[biguhêre | çavkaniyê biguhêre]

1. Di kompleksa antenê ya fotosîstema II de fotonek li molekula pîgmentê dixe, elektronek pîgmentê han dibe û ber bi orbîtalek bi enerjiya zêdetir, bilind dibe. Gava elektron vedigere rewşa sirûştî, ji enerjiya wê îcar elektronek molekula pîgmenta cinar han dibe. Ev pêvajo didome û enerjiya fotonê ji molekulek pîgmentê tê guhaztin ber bi pîgmentek din, heta ko bigihîje navenda karlêkê ya fotosîstema II. Di navenda karlêkê de enerjiya fotonê elektronek molekula klorofîla a-yê (P680) ber bi orbîtala bi enerjiya bilintir han dike.

2 . Elektrona hanbûyî ji P680ê tê guhaztin bo wergira elektronê ya yekemîn.Wekî encam, P680 ya elektronek windakirî êdî wekî P680+ tê nîşankirin.

3. Molekulek avê bi enzîmek tê parçêkirin bo du elektron, du îyonên hîdrojenê û atomek oksîjenê. P680+ di zîndeweran de oksînera herî bi hêz e, li dewsa elektrona ko ji aliyê wergira elektronê ya yekemîn ve hatibû wergirtin, elektonên avê yek bi yek tevlê P680+-yê dibin. Îyonên hîdrojenê (proton) yên avê, di lumena tîlakoîdê dimînin. Atoma oksîjenê demildest bi atomek din a oksîjenê ya ko ji hilweşandîna molekulek din a avê peydabibû ve yek dibe û molekulek oksîjenê (O2) çêdibe.

4. Her yek ji elektronên hanbûyî ji wergira elektronê ya yekemîn a fotosîstema II, bi navbeynkariya zincîra guhaztina elektronan digihîje fotosîstema I-ê. Zincîra guhaztina elektronan a di navbera fotosîstema II û fotosîstema I, ji plastokînîn, kompleksa sîtokrom û kompleksa proteînê ya bi navê plastosîyanîn pêk tê.

5. Her ko elektron di kompleksa sîtokromê de derbas dibin, proton ji stromayê ber bi lumena tîlakoîdê ve tên pompekirin. Berhevbûna protonan di lumena tîlakoîde de gradyana protonan ava dike. Gradyana protonan di kemîozmozê de ji bo berhemkirina ATP-yan tê bikaranîn.[10]

6. Di heman demê de enerjiya ronahiyê ji pîgmentên antenê ya fotosîstema I-ve tê guhaztin bo navenda karlêkê ya fotosîstema I-ê. Enerjiya ronahiyê, elektrona klorofîla a-yê (P700) han dike. Elektrona hanbûyî ji aliyê wergira elektronê ya yekemîn ve tê girtin. P700 bi windakirina elekronê edî ji bo wergirtina elektronek nû amdeyê û wekî P700+ tê nîşankirin. P700+ li kotahiya zincîra guhaztina elekronan de, elektrona ko ji aliyê fotosîstema II ve hatibû berdan, werdigire û elektronên xwe temam dike.

7. Elektronên hanbûyî jî bi rêzekarlêkên oksandin û kêmkirinê ji wergira elektronê ya yekemîn a fotosîstema I-ê, bi navbeynkariya proteîna ferredoksînê, derbasî zincîra guhaztina elektronan a duyem dibin. Ev zincîr gradyana protonan ava nake, loma ATP nayê berhemanîn.

8. Enzîma NADP+ reduktaz guhaztina elektronan a ji ferredoksînê bo NADP+ -yê çalak dike. Ji bo kêmkirina NADP+-yê bo NADPH-yê, pêdivî bi du elektronan heye. Asta enerjiya molekula NADPH-yê ji ya avê bilindtir e. Bi kêmkirina NADP+-yê, protonek jî ji stromayê tê guhaztin bo lumena tîlakoîdê.[10]

Girêdanên derve

[biguhêre | çavkaniyê biguhêre]
  1. ^ Britannica, The Editors of Encyclopaedia. "phosphorylation". Encyclopedia Britannica, 20 Jul. 2017, [1]Accessed 16 July 2024.
  2. ^ Lawrence, E. (2005). Hendersons dictionary of biology. Harlow: Pearson/Prentice Hall. ISBN 978-0-13-127384-9
  3. ^ Tymoczko, J.L., Berg, J.M. and Lubert Stryer (2015) Biochemistry, a short course. New York: W.H. Freeman & Company, A Macmillan Education Imprint.
  4. ^ Biochemistry. : Rawn, J.D. (1989) Biochemistry. Burlington, NC: Neil Patterson Publishers, Carolina Biological Supply Company. ISBN- 0-89278-400-8
  5. ^ Rye, C., Wise, R., Jurukovski, V., Desaix, J., Choi, J., & Avissar, Y. (2017).Biology. Houston, Texas : OpenStax College, Rice University,
  6. ^ Cullen, K. E. (2009).Encyclopedia of Life Science. Newyork: Facts On File, Inc
  7. ^ Johnson, L. G. (1987). Biology. Dubuque, Iowa: Wm. C. Brown.
  8. ^ a b Brooker, R., Widmaier, E., Graham, L., & Stiling, P. (2017). Biology (4th ed.).
  9. ^ Starr, C. (2007). Biology:concepts and applications (7th ed.). Boston, MA: Cengage Learning.
  10. ^ a b Reece, Jane B. Campbell Biology : Jane B. Reece ... [et Al.]. 9th ed., Boston, Ma, Benjamin Cummings, 2011.